
©2017 Lucasfilm Ltd.

MaterialX: An Open
Standard for Network-
Based CG Object Looks

©2017 Lucasfilm Ltd.

Presentations

Doug Smythe

Jonathan Stone

Larry Gritz

Guido Quaroni

Niklas Harrysson

Discussion and Q & A

MaterialX: What's New Since 2016

MaterialX Open Source Project

OSL Standard Nodes for MaterialX

MaterialX Support in USD

MaterialX @ Autodesk

©2017 Lucasfilm Ltd.

MaterialX Overview

. Schema and File Format used to describe "complete CG object looks":
. Shading network topology and connections
. Complex nested materials
. Texture assignments
. Geometric assignments
. Illumination and shadowing assignments for intrinsic asset lights

. Specific defined behavior for "Standard Nodes"

©2017 Lucasfilm Ltd.

MaterialX Uses

. Transferring looks from one package and/or renderer to another

. Universal material libraries

. Platform-independent asset archiving

©2017 Lucasfilm Ltd.

Features of MaterialX

. Node and connection-based, rather than shader parameter list-based

. Strong data typing

. Fully color managed

. Compatible with (but does not require) other open standards
. OpenColorIO, Alembic, OpenEXR, OSL

. "Live, Not Baked": Setups remain editable after re-import

. Extensible, with support for application- and studio-specific node parameters,
user-defined structured data types, and custom operator nodes

©2017 Lucasfilm Ltd.

©2017 Lucasfilm Ltd.

What's Happened in the Past Year
. Worked with Autodesk to improve MaterialX's capabilities and address various

issues discovered during implementation

. Worked with Pixar's USD team to align the data model of USDShade with that of
MaterialX

. Three updates to the MaterialX Specification, now at v1.35

. Open Source! https://github.com/materialx/MaterialX

. Full details at materialx.org

https://github.com/materialx/MaterialX
http://materialx.org

©2017 Lucasfilm Ltd.

Changes to the Specification

. Unify and simplify how various elements are defined and connected

. Fix things that were unclear or ambiguous

. New capabilities

©2017 Lucasfilm Ltd.

Changes to the Specification: Shaders
. Shaders are now simply "nodes", with a node output type declared with a "shader"

semantic
. E.g. nodes that output type "surfaceshader", "displacementshader", etc.

. BxDF shaders can be freely intermixed with regular Pattern and Source nodes
within Nodegraphs

. Shaders connect to other shaders using compatible input types rather than
specialized "coshader" connections and AOVs/AOVsets.
. Coshader, aov, and aovset elements no longer needed, and have been removed

©2017 Lucasfilm Ltd.

Changes to the Specification: Materials
. Materials can now only bind values or input connections to top-level shaders, not

anything feeding into it.

. This leads to a simpler yet more powerful approach to defining network-based
shaders, including layered shaders:

1. Describe connections of multiple nodes and shaders within a nodegraph with (e.g.)
output type "surfaceshader"

2. Use a nodedef to provide an external "shader" interface to it
3. <Shaderref> that in the material.

©2017 Lucasfilm Ltd.

Changes to the Specification: Visibility
. New generalized <visibility> element

. Defines visibility of a particular category between one or more "viewer
geometries" and one or more "other geometries"

. Standard categories: camera, illumination, shadow, secondary
. Can define additional arbitrary categories

. Used within looks

. Replaces standard properties "invisible", "vistocamera", "vistoshadow" and
"vistosecondary"

©2017 Lucasfilm Ltd.

Changes to the Specification: Nodegraph Nodes

. Unified node connection syntax: Nodes connect to other nodes using <input>s
rather than parameters of a special type

. Node inputs can perform inline type conversion, connect to one member within a
custom type, or swizzle channels upon input

. New standard source: fractal3d

. New standard operators modulo, smoothstep, floor, dotproduct, crossproduct,
scale, rotate2d, compare, switch, swizzle, pack

. Removed operators: reorder, convert (made redundant by swizzle and pack)

©2017 Lucasfilm Ltd.

Changes to the Specification: Lights
. Lights are now syntactically treated exactly the same way as any other geometry

. Refer to a light via its pathed name in the geometry scene graph

. Assigned to a shader using a <materialassign> in a look

. No separate <light> element required

. Uses the <visibility> element to define what a light illuminates and what geometry
cast shadows from the light
. <lightillum>, <lightshadow> and <lightassign> elements all removed

©2017 Lucasfilm Ltd.

Changes to the Specification: Miscellaneous
. Custom Data Types are now full structs, with named/typed member variables

. Namespaces

. Geometry names can now include wildcard expressions, rather than using
separate "regex" attributes

. Various syntax changes for names and parameter values:
. Hierarchical property names use "_" instead of ":" as group separator
. interfacename attribute instead of "$paramname" for referencing custom node

parameters
. materialvar attribute instead of "@varname" for materialvar substitutions

©2017 Lucasfilm Ltd.

MaterialX Open Source
Project
+ Jonathan Stone, Lucasfilm ADG

©2017 Lucasfilm Ltd.

Open Source Launch

. Open Source Launch

. Library Introduction

. Next Steps

©2017 Lucasfilm Ltd.

MaterialX Open Source

www.materialx.org

http://www.materialx.org

©2017 Lucasfilm Ltd.

MaterialX GitHub

https://github.com/materialx/MaterialX

https://github.com/materialx/MaterialX

©2017 Lucasfilm Ltd.

Thanks To Our Partner Teams

Autodesk
Niklas Harrysson, Bernard Kwok, Eric Bourque

OSL team at Sony Pictures Imageworks
Larry Gritz, Adam Martinez, Derek Haase

USD team at Pixar
Guido Quaroni, Sebastian Grassia, Davide Pesare

©2017 Lucasfilm Ltd.

Library Introduction

. Open Source Launch

. Library Introduction

. Next Steps

©2017 Lucasfilm Ltd.

What’s In The Open Source Library?

C++11 codebase with Python bindings
CMake build system
PyBind11 bindings
Very lightweight, with no external code dependencies

Developer guide
C++ API documentation (Doxygen)
Simple examples of C++/Python code and MaterialX documents

OSL definitions for the standard nodes
Snapshot of shader generators maintained by the OSL team

©2017 Lucasfilm Ltd.

MaterialX C++ Modules

MaterialXCore

Creation, editing, and traversal of documents and graphs
MaterialXFormat

Reading and writing reference MTLX files
MaterialXTest

Unit tests (Catch)
PyMaterialX

Python bindings (PyBind11)

©2017 Lucasfilm Ltd.

MaterialX Code Example

C++ Python

http://www.materialx.org/docs/api/codeexamples.html

http://www.materialx.org/docs/api/codeexamples.html

©2017 Lucasfilm Ltd.

Next Steps

. Open Source Launch

. Library Introduction

. Next Steps

©2017 Lucasfilm Ltd.

Improved High-Level API

Allowing common material operations to be performed in a single call, e.g.
Iterating through the inputs of a material’s primary shader
Checking whether a shader input is uniform or spatially-varying

Some specific improvements are driven by ILM production
Interested in additional ideas from the community

©2017 Lucasfilm Ltd.

Shared BxDF Shaders

With interfaces and behaviors that are open and well-defined
Two potential approaches:

MaterialX interfaces for canonical shader implementations
Graphs of BxDF nodes

Additional ideas from the community are welcomed

©2017 Lucasfilm Ltd.

Standalone MaterialX Visualizers

Key in establishing a ground truth for MaterialX content
Allow visual validation of new importers and exporters
MaterialX shader generators are a very promising approach

See upcoming presentation from Niklas

©2017 Lucasfilm Ltd.

Thanks to Our Lucasfilm Colleagues

Including Rob Bredow, David Brickhill, David Bullock, Francois Chardavoine,
Roger Cordes, Laura Evangelista, John Gaeta, Andrew Grant, Ben Grimes, Ed
Hanway, Naty Hoffman, Polly Ing, Yoon Bae Kim, Matt Koehler, Hilmar Koch,
David Meny, Hayden Landis, Matthew Lausch, Andrew Meshekoff, Robert
Molholm, Bekah Noulles, Rachel Rose, Kirk Shimano, and Masuo Suzuki
We’re hiring!

Send resumes and demo reels to siggraph2017@ilm.com

mailto:siggraph2017@ilm.com

MaterialX
OpenShadingLanguage

Reference Implementation

Cast

Adam Martinez and Derek Haase - Mercenary shader writers with over 30 years
combined experience in production rendering

Larry Gritz - OSL project architect

Doug Smythe and Jonathan Stone - Creators of the MaterialX specification and API

http://www.materialx.org

The specification was developed by Doug Smythe and Jonathan Stone at Industrial
Light and Magic and was released at Siggraph 2016.

A standardized way to specify the look of cg objects built using shader networks so
that these looks (or subcomponents of looks) can be passed from one software
package to another.

A strict set of rules for transferring the recipe used to create a cg object from
package to package.

The MaterialX - OSL Reference Implementation is a
library of atomic shader nodes that adhere to the

nodes described in the MaterialX specification v1.35
(pp. 25-40)

Caveats: blur and ambient occlusion nodes are in the specification, but not in the reference implementation.

Motivations

Larry Gritz - “OSL should come with some basic shaders.”

Doug Smythe and Jonathan Stone - “MaterialX needs a reference implementation.”

Adam Martinez and Derek Haase - “We like working on shader libraries”

Benefits

Benefits to OSL:

OSL was lacking a structured shader library, so this is a good fit!

Benefits to MaterialX:

OSL is becoming the defacto shading language, so this is a good fit!

What this library is and is not

Provides a set of shader nodes to work with any of the MaterialX types: float, color,
color2, color4, vector, vector2 and vector4

Provides a high degree of granularity to create more complex, and transferrable,
shading networks.

Does not provide illumination models or general surface shaders

Does not provide complex procedural patterns or effects

Think of it this way:

The MaterialX OSL reference implementation gives you the building blocks to make
complicated, transferrable, shading-networks to describe a chain of operations as
input to a surface, displacement or light shader.

OSL Enhancements

Operator Overloading - allows for the implementation of math operators on user
data types:

Constructors - Dramatically simplify code by allowing in-line type declarations:

New Data Types - MaterialX-inspired types color2, color4 vector2 and vector4
have been added to OSL via the headers in src/shaders

color2 __operator__add__(color2 a, color2 b)

{

 return color2(a.r + a.r, b.a + b.a);

}

 return color2(a.r + a.r, b.a + b.a);

Reference Implementation Specifics

Every shader is described by type-agnostic .mx file in src/shaders/MaterialX

At build time, string substitution generates a type-specific flavor of .osl

shader mx_max_TYPE_SUFFIX
(

 TYPE in1 = TYPE_DEFAULT_IN,

 TYPE in2 = TYPE_DEFAULT_IN,

 output TYPE out = TYPE_DEFAULT_OUT

)

{

 out = max(in1, in2);

}

shader mx_max_color4

(

 color4 in1 = {color(0,0,0), 0},

 color4 in2 = {color(0,0,0), 0},

 output color4 out = {color(0,0,0), 0}

)

{

 out = max(in1, in2);

}

Reference Implementation Specifics

The reference implementation builds 475 distinct OSL shaders from 97 .mx
definitions

The default OSL library build process generates both readable .osl and bytecode
.oso files

Individual shaders, or shaders for specific types, can be built using the
build_materialx_osl.py script in src/shaders/MaterialX

The MaterialX distribution includes the .osl shaders as reference.

Next Steps

The OSL library is still under active development! As the spec changes, so will the
reference implementation.

We would like to continue our work on MaterialX and OSL, with potential Katana
development, GLSL implementations and Game Engine integration.

https://github.com/imageworks/OpenShadingLanguage src/shaders/MaterialX

https://github.com/materialx/MaterialX/ documents/Libraries/Source/OSL

https://github.com/imageworks/OpenShadingLanguage
https://github.com/materialx/MaterialX/tree/master/documents/Libraries/Source/OSL

MaterialX support in USD

MaterialX support in USD
UsdShade core additions:

Colorspace, color configuration encoding

Collection based material assignment

Core schema nodes for UV textures, primvar reader
and swizzle

MaterialX fully encodable in UsdShade via a core
UsdMatX extension (Fall 2017)

UsdShade

UsdRi UsdMatX

MaterialX support in USD

Open Source at Pixar: USD and OpenSubdiv
Tomorrow (Tuesday 8/1) at 4PM. Room 501C

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

Mater ia lX @ Autodesk
Niklas Harrysson  
Princ ipal Engineer
Autodesk

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

Film & TV

Games

Design

PORTABLE 
 

ART DIRECT-
ABLE

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

• Application agnostic
• A baseline stdlib of shader nodes
• Extensible
• Not only materials, complete looks!
• Lightweight SDK
• No dependencies
• Open Source - with leading  

industry partners

Why MaterialX?

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

1. In app representation
• A data model not only  

for transportation
• Editable
• Observable
• For shader libraries
• Compounds / sub-graphs

Collaboration | Autodesk’s focus

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

2. Suitable for shader generation
• Translation to executable

shader code
• Graph traversal
• Flattening sub-graphs
• Topological sorting
• Node implementation

descriptions

Collaboration | Autodesk’s focus

…

GLSL

Application
Editor

ShaderX

Graph Optimizations Shader generation

Code Database

Code generator
OSL

.mtlx .osl 
.glsl 
…

Renderer

MDL

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

ShaderX | Adding a custom node library

• A library of nodes for  
physically based shading

• A standard “uber”  
surface shader

• Nodes for BxDF based  
shader construction

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

ShaderX | A MaterialX fork

• ShaderX now being integrated  
in a MaterialX fork

• Some work already pushed  
back to MaterialX master

• Autodesk’s fork will be made  
public when practical

• Continue to push work  
to MaterialX master

• Remove fork when fully integrated

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

MaterialX | Product interop.

Look-DevModelling LayoutAnimation Simulation Lighting Rendering Compositing

Desktop

Cloud

Lookdev 
Editor

Scene  
graph

USD

Alembic

MaterialX ShaderX

MaterialX

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

Demo | LookdevX

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

Demo | MaterialX to Arnold

© 2017 Autodesk, Inc. All rights reserved.© 2017 Autodesk, Inc. All rights reserved.

Demo | Maya Exporter

