MaterialX: An Open
MATERIALX Standard for Network-
Based CG Object Looks

Presentations

Doug Smythe
Jonathan Stone
Larry Gritz
Guido Quaroni
Niklas Harrysson

Discussion and Q & A

©2017 Lucasfiim Ltd.

MaterialX: What's New Since 2016
MaterialX Open Source Project
OSL Standard Nodes for MaterialX
MaterialX Support in USD

MaterialX @ Autodesk

MaterialX Overview

. Schema and File Format used to describe "complete CG object looks":
. Shading network topology and connections
. Complex nested materials
. Texture assignments
. Geometric assignments
. lllumination and shadowing assignments for intrinsic asset lights

. Specific defined behavior for "Standard Nodes"

©2017 Lucasfiim Ltd.

MaterialX Uses

. Transferring looks from one package and/or renderer to another
. Universal material libraries

. Platform-independent asset archiving

©2017 Lucasfiim Ltd.

Features of MaterialX

©2017 Lucasfiim Ltd.

. Node and connection-based, rather than shader parameter list-basead
. Strong data typing

. Fully color managed

. Compatible with (but does not require) other open standards

. OpenColorlO, Alembic, OpenEXR, OSL

. "Live, Not Baked": Setups remain editable after re-import
. Extensible, with support for application- and studio-specific node parameters,

user-defined structured data types, and custom operator nodes

Texture Files GeomAttrs Geometry

'-f Y #
' | color.1001 | specular. 1001 | ! :
i color.1002 | specular.1002| ! qXtd=1001 |
! color.1003 | specular.1003] ! : @ ik
1 sas e] I
[]] [
: : itk’[lﬁ=1ﬂﬂ2 s L ., 1algs
]] [
v [@tio0r | bump.1001 | : f @
] 1 f [
It.1002 bump. 1002 i txtid=1003 ,
: a | P | . < . ,‘.f\a:-'gE-
1 1 [
- - =
]] [
I] [
] 1 I I
i E—
= — -‘ ------- -T- - g —mm wm mm omm oEm wm mm oEm omm owm Em =
% - "" P s o Mk - "‘
[i ¥
1 | i | |
v [N1 - | :
: color altrnix : : M1 : I 1
ekt ' hasic srf . ! !
; St o calor 4 ' == - \ ! ' A A 4 L1 '
P - : diffuse 3 ! '
i Yutatid T 1 1 1 i 1
I 1 ,—yggmecular i T — = M4 '
: : : raltmix=0 . 1 : !
! ! | iroughness=0.25 1 1 I 1
]] I W . ol =] (] L]
] ! i]]]
, [N2 | \ : : : :
1 j altmmix 1 | 1 I 1
Specular. 7] i
v | setatia J_SHEC) I M2 : . L2 :
: =1;.rn$-}| :] : basic =rf: : [:
: P N— : diffuse .: 4 - : = MA e il
i 1 specular [1 i [
: : : , altmix=0.2 ; 1 : 1
i i I 1raughness=0.15 ' ' = MA | - I
NLE : - d : :
: b perlt ' : | bump dsp: i I 1
i ,v_“ o_bum ! ' ' '
W ol P = 5 - : bump 1! : ' '
1 i . tburmpmult=0.1 1 1 i !
|] 1 R = 1 I 1
1 1 I]]]
l\-q- ------------------- *" lh-‘ ;: E\ 1,;
NodeGraphs Materials Looks

©2017 Lucasfim Ltd. MaterialX Overview

What's Happened in the Past Year

. Worked with Autodesk to improve MaterialX's capabllities and address various
iIssues discovered during implementation

. Worked with Pixar's USD team to align the data model of USDShade with that of
MaterialX

. Three updates to the MaterialX Specification, now at v1.35

. Open Source! https://agithub.com/materialx/MaterialX

. Full detalls at materialx.org

©2017 Lucasfiim Ltd.

https://github.com/materialx/MaterialX
http://materialx.org

Changes to the Specification

. Unify and simplity how various elements are defined and connected
. Fix things that were unclear or ambiguous

. New capabilities

©2017 Lucasfiim Ltd.

Changes to the Specification: Shaders

. Shaders are now simply "nodes”, with a node output type declared with a "shader’
semantic
. E.g. nodes that output type "surfaceshader”, "displacementshader”, etc.

. BXDF shaders can be freely intermixed with regular Pattern and Source nodes
within Nodegraphs

. Shaders connect to other shaders using compatible input types rather than
specialized "coshader" connections and AOVs/AOVsets.

. Coshader, aov, and aovset elements no longer needed, and have been removed

©2017 Lucasfiim Ltd.

Changes to the Specification: Materials

. Materials can now only bind values or input connections to top-level shaders, not
anything feeding into it.

. This leads to a simpler yet more powerful approach to defining network-based
shaders, including layered shaders:

1. Describe connections of multiple nodes and shaders within a nodegraph with (e.qg.)
output type "surfaceshader”

2. Use a nodedef to provide an external "shader” interface to it
3. <Shaderref> that in the material.

©2017 Lucasfiim Ltd.

Changes to the Specification: Visibility

. New generalized <visibility> element

. Defines visibility of a particular category between one or more "viewer
geometries” and one or more "other geometries”

. Standard categories: camera, illumination, shadow, secondary
. Can define additional arbitrary categories

. Used within looks

. Replaces standard properties "invisible”, "vistocamera", "vistoshadow" and
"vistosecondary”

©2017 Lucasfiim Ltd.

Changes to the Specification: Nodegraph Nodes

. Unified node connection syntax: Nodes connect to other nodes using <input>s

rather than parameters of a special type

. Node inputs can perform inline type conversion, connect to one member within a

custom type, or swizzle channels upon input

. New standard source: fractal3d
. New standard operators modulo, smoothstep, floor, dotproduct, crossproduct,

scale, rotate2d, compare, switch, swizzle, pack

. Removed operators: reorder, convert (made redundant by swizzle and pack)

©2017 Lucasfiim Ltd.

Changes to the Specification: Lights

. Lights are now syntactically treated exactly the same way as any other geometry
. Refer to a light via its pathed name in the geometry scene graph
. Assigned to a shader using a <materialassign> in a look
. No separate <light> element required

. Uses the «visibllity> element to define what a light illuminates and what geometry

cast shadows from the light
. <lightillum>, <lightshadow> and <lightassign> elements all removed

©2017 Lucasfiim Ltd.

Changes to the Specification: Miscellaneous

. Custom Data Types are now full structs, with named/typed member variables

. Namespaces

. Geometry names can now include wildcard expressions, rather than using

separate "regex” attributes

. Various syntax changes for names and parameter values:

©2017 Lucasfiim Ltd.

. Hierarchical property names use "_" instead of ":" as group separator

. interfacename attribute instead of "$paramname" for referencing custom node
parameters

. materialvar attribute instead of "@varname" for materialvar substitutions

MaterialX Open Source
Project

+ Jonathan Stone, Lucasfilm ADG

Open Source Launch

. Open Source Launch
. Library Introduction

. Next Steps

©2017 Lucasfilm Ltd.

©2017 Lucasfim Ltd.

r

Specification

o MaterialX Spec PDF (v1.35)
o Specification Revision History
o Sample Files

o Frequently-Asked Questions

Developer Reference
o Developer Guide
o Code Examples

o Discussion Forum

Third-Party MaterialX Support
o Standard Node OSL Shaders
o USD + MaterialX (Pixar)

Contributing to MaterialX
o How To Contribute
o Current Contributors

License

\\‘

MaterialX Open Source

Home Developer Guide Specification Help GITHUB

Introduction to MaterialX

© & ™ 2017 LUCASFILM LTD. ALL RIGHTS RESERVED.

MaterialX

MaterialX is an open standard for transfer of rich material and look-development content between applications and renderers.
Originated at Lucasfilm in 2012, MaterialX has been used by Industrial Light & Magic in feature films such as Star Wars: The Force
Awakens and Rogue One: A Star Wars Story, and by ILMxLAB in real-time experiences such as Trials On Tatooine.

www.materialx.org

L

http://www.materialx.org

MaterialX GitHub

O This repository Pull requests Issues Marketplace Gist A +~ @'

. materialx / MaterialX @® Unwatch~ 40 % Star
Pull requests 0 Projects 0 Wiki Settings Insights «

MaterialX C++ and Python libraries http://www.materialx.org/

Add topics

D 14 commits 1 1 branch O 1 releas 22 2 contributors

Branch: master v New pull request Create new file = Upload files = Find file Clone or download v

ommit 33c44af 5 days

BB documents

Bm python

B source

=) CHANGELOG.md

£] CMakelists.txt

=] CONTRIBUTING.md
=) LICENSE.txt

README.md

https://qithub.com/materialx/MaterialX

©2017 Lucasfim Ltd.

https://github.com/materialx/MaterialX

Thanks To Our Partner Teams

o Autodesk

® Niklas Harrysson, Bernard Kwok, Eric Bourque
e OSL team at Sony Pictures Imageworks

e | arry Gritz, Adam Martinez, Derek Haase
e USD team at Pixar

® Guido Quaroni, Sebastian Grassia, Davide Pesare

©2017 Lucasfim Ltd.

Library Introduction

. Open Source Launch
. Library Introduction

. Next Steps

What's In The Open Source Library?

e C++11 codebase with Python bindings

e CMake build system

e PyBind11 bindings

® \ery lightweight, with no external code dependencies
® Developer guide

e C++ APl documentation (Doxygen)

e Simple examples of C++/Python code and MaterialX documents

e OSL definitions for the standard nodes

® Snapshot of shader generators maintained by the OSL team

©2017 Lucasfim Ltd.

MaterialX C++ Modules

¢ MaterialXCore
e Creation, editing, and traversal of documents and graphs
¢ MaterialXFormat
e Reading and writing reference MTLX files
e MaterialXTest
e Unit tests (Catch)
e PyMaterialX
e Python bindings (PyBind11)

©2017 Lucasfim Ltd.

MaterialX Code Example

namespace mx = MaterialX; import MaterialX as mx

Read a document from disk.
doc = mx.createDocument()
mx.readFromXmlFile(doc, "ExampleFile.mtlx")

// Read a document from disk.
ntPtr doc = mx::createDocument();
mx: :readFromXmlFile(doc, "ExampleFile.mtlx"™);

Traverse the document tree in depth-first order.
for elem in doc.traverseTree():

// Traverse the document tree in depth-first order.

for (mx::ElementPtr elem : doc->traverseTree())

{

if elem.isA(mx.Node, "constant’):
print 'Constant node:', elem

elif elem.isA(mx.Node, "image'):
print 'Image node:', elem

if (elem->isA<mx::Node>("constant"))

cout << "Constant node: " << elem << endl;
else if (elem->isA<mx::Node>("image™))

cout << "Image node: " << elem << endl;

C++ Python

http://www.materialx.org/docs/api/codeexamples.html

©2017 Lucasfim Ltd.

http://www.materialx.org/docs/api/codeexamples.html

Next Steps

. Open Source Launch
. Library Introduction

. Next Steps

©2017 Lucasfim Ltd.

Improved High-Level AP

e Allowing common material operations to be performed in a single call, e.q.
® |terating through the inputs of a material’s primary shader
e Checking whether a shader input is uniform or spatially-varying

® Some specific iImprovements are driven by ILM production

® |nterested in additional ideas from the community

©2017 Lucasfim Ltd.

Shared BxDF Shaders

e \\Vith interfaces and lbehaviors that are open and well-defined
® [wo potential approaches:
e MaterialX interfaces for canonical shader implementations
e Graphs of BXDF nodes

e Additional ideas from the community are welcomed

©2017 Lucasfim Ltd.

Standalone MaterialX Visualizers

e Key in establishing a ground truth for MaterialX content
e Allow visual validation of new importers and exporters
e MaterialX shader generators are a very promising approach

® See upcoming presentation from Niklas

©2017 Lucasfim Ltd.

Thanks to Our Lucasfiim Colleagues

¢ |ncluding Rob Bredow, David Brickhill, David Bullock, Francois Chardavoine,

Roger Cordes, Laura Evangelista, John Gaeta, Andrew Grant, Ben Grimes, Ed

Hanway, Naty Hoffman, Polly Ing

Molholm, Bekah Noulles, Rachel

® \\Ve’re hiring!

- Yoon Bae Kim, Matt Koehler, Hilmar Koch,

David Meny, Hayden Landis, Matthew Lausch, Andrew Meshekoff, Robert

Rose, Kirk Shimano, and Masuo Suzuki

® Send resumes and demo reels to siggraph2017@ilm.com

©2017 Lucasfim Ltd.

mailto:siggraph2017@ilm.com

MaterialX
OpenShadinglLanguage
Reference Implementation

>
o

o9 OSt

Cast

Adam Martinez and Derek Haase - Mercenary shader writers with over 30 years
combined experience in production rendering

Larry Gritz - OSL project architect

Doug Smythe and Jonathan Stone - Creators of the MaterialX specification and API

>
R
]
£

MATERIALX
http://www.materialx.org

The specification was developed by Doug Smythe and Jonathan Stone at Industrial
Light and Magic and was released at Siggraph 2016.

A standardized way to specify the look of cg objects built using shader networks so
that these looks (or subcomponents of looks) can be passed from one software
package to another.

A strict set of rules for transferring the recipe used to create a cg object from
package to package.

The MaterialX - OSL Reference Implementationis a
library of atomic shader nodes that adhere to the
nodes described in the MaterialX specification v1.35

(pp. 25-40)

Caveats: blur and ambient occlusion nodes are in the specification, but not in the reference implementation.

Motivations

Larry Gritz - “OSL should come with some basic shaders.”
Doug Smythe and Jonathan Stone - “MaterialX needs a reference implementation.”

Adam Martinez and Derek Haase - “We like working on shader libraries”

Benefits

Benefits to OSL:

OSL was lacking a structured shader library, so this is a good fit!

Benefits to MaterialX:

OSL is becoming the defacto shading language, so this is a good fit!

What this library is and is not

Provides a set of shader nodes to work with any of the MaterialX types: float, color,
color2, color4, vector, vector2 and vector4

Provides a high degree of granularity to create more complex, and transferrable,
shading networks.

Does not provide illumination models or general surface shaders

Does not provide complex procedural patterns or effects

Think of it this way:

The MaterialX OSL reference implementation gives you the building blocks to make
complicated, transferrable, shading-networks to describe a chain of operations as
input to a surface, displacement or light shader.

OSL Enhancements

Operator Overloading - allows for the implementation of math operators on user
data types:

color2 operator add (color2 a, color2 b)

{

return color2(a.r + a.r, b.a + b.a);

}
Constructors - Dramatically simplify code by allowing in-line type declarations:

return color2(a.r + a.r, b.a + b.a);

New Data Types - MaterialX-inspired types color2, color4 vector2 and vector4
have been added to OSL via the headers in src/shaders

Reference Implementation Specifics

Every shader is described by type-agnostic . mx file in src/shaders/MaterialX

At build time, string substitution generates a type-specific flavor of .osl

shader mx_max_TYPE_SUFFIX shader mx_max_color4
((
TYPE inl = TYPE_DEFAULT_IN, color4 inl = {color(e,0,0), 0},
TYPE in2 = TYPE_DEFAULT_IN, color4 in2 = {color(0,0,0), 0},
output TYPE out = TYPE_DEFAULT_OUT output color4 out = {color(e,0,0), 0}
))
{ {
out = max(inl, in2); out = max(inl, in2);

Reference Implementation Specifics

The reference implementation builds 475 distinct OSL shaders from 97 .mx
definitions

The default OSL library build process generates both readable .osl and bytecode
.0so files

Individual shaders, or shaders for specific types, can be built using the
build_materialx_osl.py script in src/shaders/MaterialX

The MaterialX distribution includes the .osl shaders as reference.

Next Steps

The OSL library is still under active development! As the spec changes, so will the
reference implementation.

We would like to continue our work on MaterialX and OSL, with potential Katana
development, GLSL implementations and Game Engine integration.

https://github.com/imageworks/OpenShadinglLanguage src/shaders/MaterialX

https://github.com/materialx/MaterialX documents/Libraries/Source/OSL

https://github.com/imageworks/OpenShadingLanguage
https://github.com/materialx/MaterialX/tree/master/documents/Libraries/Source/OSL

MaterialX support in USD

MaterialX support in USD

® [JsdShade core additions:

x Colorspace, color configuration encoding

® Collection based material assignment

® Core schema nodes for UV textures, primvar reader
and swizzle

® MaterialX fully encodable in UsdShade via a core
UsdMatX extension (Fall 2017)

UsdRi UsdMatX
UsdShade

MaterialX support in USD

Open Source at Pixar: USD and OpenSubdiv
Tomorrow (Tuesday 8/1) at 4PM. Room 501C

MaterialX @ Autodesk

Niklas Harrysson
Principal Engineer
Autodesk

© 2017 Autodesk, Inc. All rights reserved.

>

PIayS}qtlon

®rixARS
RenderMan

Autodesk
BIFROST

Why MaterialX?

* Application agnostic

* A Dbaseline stdlib of shader nodes

* Extensible

* Not only materials, complete looks!
 Lightweight SDK

* No dependencies

* Open Source - with leading
iIndustry partners

Collaboration | Autodesk’s focus

In app representation

A data model not only
for transportation

Editable

Observable

For shader libraries
Compounds / sub-graphs

Collaboration | Autodesk’s focus

Suitable for shader generation

Translation to executable
shader code

Graph traversal
Flattening sub-graphs

Topological sorting

Node implementation
descriptions

ShaderX | Adding a custom node library

A library of nodes for
physically based shading

A standard “uber”
surface shader

Nodes for BxDF based
shader construction

ShaderX | A MaterialX fork

S h ad e rX nOW bei ng i nteg rated | autodesk-forks / MaterialX
in a MaterialX fork o Qim0 Tnimene Bmicne

Forked from https://github.com/materialx/MaterialX.git

Some work already pushed
b aC k tO M ate ri a I X m aSte r franelc ansigmaster)| | Newt pull noqyest Create new file

This branch is 46 commits ahead of master.
Autodesk’s fork will be made
S S r WI 8 documents Added full support for the conditional nodes (compare and switch).
b I . h n r t . I ythe Initial release of MaterialX v1.35.2
p u I C W e p aC I C a j source Added missing file changes from previous commit.

?‘ harrysn committed on GitHub Enterprise Merge pull request #16 from autodesk-forks/shaderx_merge

E] .gitignore Added initial support for GLSL shade generation.
n
CO n tl n u e to p u S h WO rk E] CHANGELOG.md Improvements to MaterialX names
E] CMakeLists.txt Merge branch 'master’ into adsk/master
tO M ate ri a I X m aSte r [E] CONTRIBUTING.md Initial release of MaterialX v1.35.2
[E] LICENSE.txt Initial release of MaterialX v1.35.2

=l README.md

Remove fork when fully integrated -

MaterialX | Product interop.

292 292 292 292

Modelling Animation Simulation Layout

Autodesk
BIFROST

Scene

MaterialX

292

Look-Dev

Lookdev
Editor

Material X

292

Lighting

292

Rendering

292

Compositing

Demo

Eile Edk Help Test

Craats Pansl

adgastment

- application

Composting
- enditanal
= £3
vifteh £}
o eonafubion

ookdevX

a wibfed
= wpCompeund| e
texcoordl
e | eEe
outit @
mukiplyl
e tEe /
outtt @
=1
®iin2

Imagel
@ |1 SEe
out=®
@ ltexcoord
diffusebsdfi3
® - o= e
out 4
@l reflectance
® roughness
@ inormal
reflectionbsdf1
® - GEe
out @
#reflectance
® roughness
& Hinormal
dif usebsdf2
® - oE e
out @
@ reflectance
& roughness
#=normal
diffusebsdfi
® GEe
out @
@ =reflectance
® roughness
@ - nonmal

ayerd

O =

out

L B
i
o=~

Hinfluenca
bsdf
edf
lor
baselayer

~8-0-0-0-8

Byer

[Rips oEe
out @

@ influence

& bsdf

@ eodf

® jor

baselayer

layer2

e 1 - X
out @

@ influence

® bsdf

® edf

& ior

® baselayer

& -
& out
New Port

oN

Pararmater Edior

Display

Matenal e

\"‘-\-._-f:_é!-‘-

a

Demo | MaterialX to Arnold

File Edit Creste Select Moddfy Disploy Windows Mesh EditMesh MeshTools Mesh Display Curves Surfaces Deform UV Generate Tests Cache BonusTools Amold Help Workspate: Mays Classic® - ‘_ﬁ
Modeiing ~ | @B} | i BRI SOUCC Q- Nolwesutace | - Ssmmetpom)| e | 8 signin -
= Curves / Surface: Modeing Rendering X FX Caching rston Arnold MASH Mation Graphics KGen URTLE Materialx
T Creste
e Outliner View Shading LUghling Show Renderer Panels List Sefected Fotus Altribules Show Help
§ | Display Show Help | mee R L2 I EOBCED) ONeRE v 1200 | GIAREIQ 0w Q 1o (D sResganma

= MATERIALX_LOOK
-~ . Focus
k
alaterialilook: MATERIALY_LOOK 3 Presets
[
Show Hide
W MaterialX Attributes
v Enabled
MateriaiX File F-/G/BlackSicy/build/tin/shadertalls. mtix -
Look Name Iook!
P Debug
P Hode Behawior E
» wo -
et P Extra Attributes s
3 () defaultlightSet =
@) detaurObjectSet e
File View Render PR Optiont Duplay Help
RN - R] i - 11 M P Ameld Renderer ' 1PR: OMB
Motes: MATERIALX_LOOK
size: 960 x 540 1oom. 1.000 (Amald Renderer]
= Frame: 1 Memory Wb Sampling: [M3U2AZ] Render Time: 3:40 Camera: camera Shape1
- -
\ / P » Select Load Attnbutes Copy Tab
| 1 aid 4 4 P plpini
1] I | | | | | | | | | | | | | | | | |
-, 1208 120 200 | = MoChaacterset ~ Mo Anim Layer | 2atps ¥ OIE %

ML [G]

Demo | Maya Exporter

fosdns ¥ | EmEOCc) AR ICOCCCC - wmsuse | - smearor | | BEMEEOE LN) | [Tmn - g+ETe

mm Comwes / Surfaces Poly Miodeing Srulphing Rigging Anmnation Rendering FX FX Caching Custom Amold Bifrost HdasH Mation Graphice KGen TURTLE Hlateriali

EN WG EE e s 70@0 OH=2 2 e
i--rri_._u.inzl-_:t‘gnsaml@!l-ﬂ-ﬂl‘-ai!:_? IS @@E| e om d 1w

-
G 4
=

48)

Render View
Fite Viw Render PR Options Display oiis Wl Help

WEo[aE W BB e F Qo 1 de 8

Sy .

Vb AL/ OR jRURED

. J B

w=ire

by

Jkj A, Bl g

IRER BRI

E==a|
i
}

xi]

alee: 1024 « 1024 coom: 6.913 (Armold Renderer)

T — s e GmEe
»

158 1560 Y 6 766 TEE 150 17f 14 178

106 102 104 105 108 110 112 118 116 118 120 152 194 226 115 130 137 134 135 138 140 747 1ad 196 145 150 150 153 156 15 T

U 0 (T T i T V0) o NS iV T ol AT N 1 i 1 T Y T W e o a6 i i Y i e o i o e R i i DR R
m O | - | S %

B ‘fﬁ::
.ﬁ
| Mle
|
'1
]

